Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Calcium and aluminum cycling in a temperate broadleaved deciduous forest of the eastern USA: relative impacts of tree species, canopy state, and flux type.

Identifieur interne : 001E68 ( Main/Exploration ); précédent : 001E67; suivant : 001E69

Calcium and aluminum cycling in a temperate broadleaved deciduous forest of the eastern USA: relative impacts of tree species, canopy state, and flux type.

Auteurs : Delphis F. Levia [États-Unis] ; Alexey N. Shiklomanov ; John T. Van Stan ; Carrie E. Scheick ; Shreeram P. Inamdar ; Myron J. Mitchell ; Patrick J. Mchale

Source :

RBID : pubmed:26100445

Descripteurs français

English descriptors

Abstract

Ca/Al molar ratios are commonly used to assess the extent of aluminum stress in forests. This is among the first studies to quantify Ca/Al molar ratios for stemflow. Ca/Al molar ratios in bulk precipitation, throughfall, stemflow, litter leachate, near-trunk soil solution, and soil water were quantified for a deciduous forest in northeastern MD, USA. Data were collected over a 3-year period. The Ca/Al molar ratios in this study were above the threshold for aluminum stress (<1). Fagus grandifolia Ehrh. (American beech) had a median annual stemflow Ca/Al molar ratio of 15.7, with the leafed and leafless values of 12.4 and 19.2, respectively. The corresponding Ca/Al molar ratios for Liriodendron tulipifera L. (yellow poplar) were 11.9 at the annual time scale and 11.9 and 13.6 for leafed and leafless periods, respectively. Bayesian statistical analysis showed no significant effect of canopy state (leafed, leafless) on Ca/Al molar ratios. DOC was consistently an important predictor of calcium, aluminum, and Ca/Al ratios. pH was occasionally an important predictor of calcium and aluminum concentrations, but was not a good predictor of Ca/Al ratio in any of the best-fit models (of >500 examined). This study supplies new data on Ca/Al molar ratios for stemflow from two common deciduous tree species. Future work should examine Ca/Al molar ratios in stemflow of other species and examine both inorganic and organic aluminum species to better gauge the potential for, and understand the dynamics of, aluminum toxicity in the proximal area around tree boles.

DOI: 10.1007/s10661-015-4675-3
PubMed: 26100445


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Calcium and aluminum cycling in a temperate broadleaved deciduous forest of the eastern USA: relative impacts of tree species, canopy state, and flux type.</title>
<author>
<name sortKey="Levia, Delphis F" sort="Levia, Delphis F" uniqKey="Levia D" first="Delphis F" last="Levia">Delphis F. Levia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Geography and Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA, dlevia@udel.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Departments of Geography and Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA</wicri:regionArea>
<wicri:noRegion>USA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shiklomanov, Alexey N" sort="Shiklomanov, Alexey N" uniqKey="Shiklomanov A" first="Alexey N" last="Shiklomanov">Alexey N. Shiklomanov</name>
</author>
<author>
<name sortKey="Van Stan, John T" sort="Van Stan, John T" uniqKey="Van Stan J" first="John T" last="Van Stan">John T. Van Stan</name>
</author>
<author>
<name sortKey="Scheick, Carrie E" sort="Scheick, Carrie E" uniqKey="Scheick C" first="Carrie E" last="Scheick">Carrie E. Scheick</name>
</author>
<author>
<name sortKey="Inamdar, Shreeram P" sort="Inamdar, Shreeram P" uniqKey="Inamdar S" first="Shreeram P" last="Inamdar">Shreeram P. Inamdar</name>
</author>
<author>
<name sortKey="Mitchell, Myron J" sort="Mitchell, Myron J" uniqKey="Mitchell M" first="Myron J" last="Mitchell">Myron J. Mitchell</name>
</author>
<author>
<name sortKey="Mchale, Patrick J" sort="Mchale, Patrick J" uniqKey="Mchale P" first="Patrick J" last="Mchale">Patrick J. Mchale</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26100445</idno>
<idno type="pmid">26100445</idno>
<idno type="doi">10.1007/s10661-015-4675-3</idno>
<idno type="wicri:Area/Main/Corpus">001C48</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C48</idno>
<idno type="wicri:Area/Main/Curation">001C48</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001C48</idno>
<idno type="wicri:Area/Main/Exploration">001C48</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Calcium and aluminum cycling in a temperate broadleaved deciduous forest of the eastern USA: relative impacts of tree species, canopy state, and flux type.</title>
<author>
<name sortKey="Levia, Delphis F" sort="Levia, Delphis F" uniqKey="Levia D" first="Delphis F" last="Levia">Delphis F. Levia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Geography and Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA, dlevia@udel.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Departments of Geography and Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA</wicri:regionArea>
<wicri:noRegion>USA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shiklomanov, Alexey N" sort="Shiklomanov, Alexey N" uniqKey="Shiklomanov A" first="Alexey N" last="Shiklomanov">Alexey N. Shiklomanov</name>
</author>
<author>
<name sortKey="Van Stan, John T" sort="Van Stan, John T" uniqKey="Van Stan J" first="John T" last="Van Stan">John T. Van Stan</name>
</author>
<author>
<name sortKey="Scheick, Carrie E" sort="Scheick, Carrie E" uniqKey="Scheick C" first="Carrie E" last="Scheick">Carrie E. Scheick</name>
</author>
<author>
<name sortKey="Inamdar, Shreeram P" sort="Inamdar, Shreeram P" uniqKey="Inamdar S" first="Shreeram P" last="Inamdar">Shreeram P. Inamdar</name>
</author>
<author>
<name sortKey="Mitchell, Myron J" sort="Mitchell, Myron J" uniqKey="Mitchell M" first="Myron J" last="Mitchell">Myron J. Mitchell</name>
</author>
<author>
<name sortKey="Mchale, Patrick J" sort="Mchale, Patrick J" uniqKey="Mchale P" first="Patrick J" last="Mchale">Patrick J. Mchale</name>
</author>
</analytic>
<series>
<title level="j">Environmental monitoring and assessment</title>
<idno type="eISSN">1573-2959</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminum (analysis)</term>
<term>Bayes Theorem (MeSH)</term>
<term>Calcium (analysis)</term>
<term>Environmental Monitoring (methods)</term>
<term>Fagus (physiology)</term>
<term>Forests (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Linear Models (MeSH)</term>
<term>Liriodendron (physiology)</term>
<term>Plant Leaves (chemistry)</term>
<term>Rain (MeSH)</term>
<term>Soil (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Trees (MeSH)</term>
<term>United States (MeSH)</term>
<term>Water (analysis)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aluminium (analyse)</term>
<term>Arbres (MeSH)</term>
<term>Calcium (analyse)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Eau (analyse)</term>
<term>Fagus (physiologie)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Forêts (MeSH)</term>
<term>Liriodendron (physiologie)</term>
<term>Modèles linéaires (MeSH)</term>
<term>Pluie (MeSH)</term>
<term>Sol (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Surveillance de l'environnement (méthodes)</term>
<term>Théorème de Bayes (MeSH)</term>
<term>États-Unis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Aluminum</term>
<term>Calcium</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Aluminium</term>
<term>Calcium</term>
<term>Eau</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Environmental Monitoring</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Surveillance de l'environnement</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Fagus</term>
<term>Liriodendron</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fagus</term>
<term>Liriodendron</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bayes Theorem</term>
<term>Forests</term>
<term>Hydrogen-Ion Concentration</term>
<term>Linear Models</term>
<term>Rain</term>
<term>Soil</term>
<term>Species Specificity</term>
<term>Trees</term>
<term>United States</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Concentration en ions d'hydrogène</term>
<term>Forêts</term>
<term>Modèles linéaires</term>
<term>Pluie</term>
<term>Sol</term>
<term>Spécificité d'espèce</term>
<term>Théorème de Bayes</term>
<term>États-Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ca/Al molar ratios are commonly used to assess the extent of aluminum stress in forests. This is among the first studies to quantify Ca/Al molar ratios for stemflow. Ca/Al molar ratios in bulk precipitation, throughfall, stemflow, litter leachate, near-trunk soil solution, and soil water were quantified for a deciduous forest in northeastern MD, USA. Data were collected over a 3-year period. The Ca/Al molar ratios in this study were above the threshold for aluminum stress (<1). Fagus grandifolia Ehrh. (American beech) had a median annual stemflow Ca/Al molar ratio of 15.7, with the leafed and leafless values of 12.4 and 19.2, respectively. The corresponding Ca/Al molar ratios for Liriodendron tulipifera L. (yellow poplar) were 11.9 at the annual time scale and 11.9 and 13.6 for leafed and leafless periods, respectively. Bayesian statistical analysis showed no significant effect of canopy state (leafed, leafless) on Ca/Al molar ratios. DOC was consistently an important predictor of calcium, aluminum, and Ca/Al ratios. pH was occasionally an important predictor of calcium and aluminum concentrations, but was not a good predictor of Ca/Al ratio in any of the best-fit models (of >500 examined). This study supplies new data on Ca/Al molar ratios for stemflow from two common deciduous tree species. Future work should examine Ca/Al molar ratios in stemflow of other species and examine both inorganic and organic aluminum species to better gauge the potential for, and understand the dynamics of, aluminum toxicity in the proximal area around tree boles. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">26100445</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-2959</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>187</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Environmental monitoring and assessment</Title>
<ISOAbbreviation>Environ Monit Assess</ISOAbbreviation>
</Journal>
<ArticleTitle>Calcium and aluminum cycling in a temperate broadleaved deciduous forest of the eastern USA: relative impacts of tree species, canopy state, and flux type.</ArticleTitle>
<Pagination>
<MedlinePgn>458</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10661-015-4675-3</ELocationID>
<Abstract>
<AbstractText>Ca/Al molar ratios are commonly used to assess the extent of aluminum stress in forests. This is among the first studies to quantify Ca/Al molar ratios for stemflow. Ca/Al molar ratios in bulk precipitation, throughfall, stemflow, litter leachate, near-trunk soil solution, and soil water were quantified for a deciduous forest in northeastern MD, USA. Data were collected over a 3-year period. The Ca/Al molar ratios in this study were above the threshold for aluminum stress (<1). Fagus grandifolia Ehrh. (American beech) had a median annual stemflow Ca/Al molar ratio of 15.7, with the leafed and leafless values of 12.4 and 19.2, respectively. The corresponding Ca/Al molar ratios for Liriodendron tulipifera L. (yellow poplar) were 11.9 at the annual time scale and 11.9 and 13.6 for leafed and leafless periods, respectively. Bayesian statistical analysis showed no significant effect of canopy state (leafed, leafless) on Ca/Al molar ratios. DOC was consistently an important predictor of calcium, aluminum, and Ca/Al ratios. pH was occasionally an important predictor of calcium and aluminum concentrations, but was not a good predictor of Ca/Al ratio in any of the best-fit models (of >500 examined). This study supplies new data on Ca/Al molar ratios for stemflow from two common deciduous tree species. Future work should examine Ca/Al molar ratios in stemflow of other species and examine both inorganic and organic aluminum species to better gauge the potential for, and understand the dynamics of, aluminum toxicity in the proximal area around tree boles. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Levia</LastName>
<ForeName>Delphis F</ForeName>
<Initials>DF</Initials>
<AffiliationInfo>
<Affiliation>Departments of Geography and Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA, dlevia@udel.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shiklomanov</LastName>
<ForeName>Alexey N</ForeName>
<Initials>AN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Van Stan</LastName>
<ForeName>John T</ForeName>
<Initials>JT</Initials>
<Suffix>2nd</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Scheick</LastName>
<ForeName>Carrie E</ForeName>
<Initials>CE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Inamdar</LastName>
<ForeName>Shreeram P</ForeName>
<Initials>SP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mitchell</LastName>
<ForeName>Myron J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McHale</LastName>
<ForeName>Patrick J</ForeName>
<Initials>PJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Environ Monit Assess</MedlineTA>
<NlmUniqueID>8508350</NlmUniqueID>
<ISSNLinking>0167-6369</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>CPD4NFA903</RegistryNumber>
<NameOfSubstance UI="D000535">Aluminum</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000535" MajorTopicYN="N">Aluminum</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001499" MajorTopicYN="N">Bayes Theorem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004784" MajorTopicYN="N">Environmental Monitoring</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029964" MajorTopicYN="N">Fagus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="Y">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016014" MajorTopicYN="N">Linear Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031567" MajorTopicYN="N">Liriodendron</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011891" MajorTopicYN="N">Rain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014481" MajorTopicYN="N">United States</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26100445</ArticleId>
<ArticleId IdType="doi">10.1007/s10661-015-4675-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1995 Feb;107(2):315-321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2004 Feb;54(8):1163-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14664845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Jun;85(11):3888-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1986 Oct;70(3):423-425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311930</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Inamdar, Shreeram P" sort="Inamdar, Shreeram P" uniqKey="Inamdar S" first="Shreeram P" last="Inamdar">Shreeram P. Inamdar</name>
<name sortKey="Mchale, Patrick J" sort="Mchale, Patrick J" uniqKey="Mchale P" first="Patrick J" last="Mchale">Patrick J. Mchale</name>
<name sortKey="Mitchell, Myron J" sort="Mitchell, Myron J" uniqKey="Mitchell M" first="Myron J" last="Mitchell">Myron J. Mitchell</name>
<name sortKey="Scheick, Carrie E" sort="Scheick, Carrie E" uniqKey="Scheick C" first="Carrie E" last="Scheick">Carrie E. Scheick</name>
<name sortKey="Shiklomanov, Alexey N" sort="Shiklomanov, Alexey N" uniqKey="Shiklomanov A" first="Alexey N" last="Shiklomanov">Alexey N. Shiklomanov</name>
<name sortKey="Van Stan, John T" sort="Van Stan, John T" uniqKey="Van Stan J" first="John T" last="Van Stan">John T. Van Stan</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Levia, Delphis F" sort="Levia, Delphis F" uniqKey="Levia D" first="Delphis F" last="Levia">Delphis F. Levia</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26100445
   |texte=   Calcium and aluminum cycling in a temperate broadleaved deciduous forest of the eastern USA: relative impacts of tree species, canopy state, and flux type.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26100445" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020